What I Wish I Had for Visual-Tactile Sensing?

Binghao Huang
© Columbia

I want to play a Game

Test your Dexterity!

Cheers!

You just learned a Dexterous Skill and Notice your

Flexible Tactile Sensor

Fragile Objects Manipulation

Bimanual In-Hand Reorientation

Fragile Objects Manipulation

Bimanual In-Hand Reorientation

Fragile Objects Manipulation

Bimanual In-Hand Reorientation

Task-relevant information

Fragile Objects Manipulation

Bimanual In-Hand Reorientation

Action

Task-relevant information

Can we enable robots with those abilities?

A lack of commonly accepted, scalable solutions in the Robotics field...

A lack of commonly accepted, scalable solutions in the Robotics field...

High Resolution
Shear Force
Bulky
Noisy

High Resolution
Shear Force
Bulky
Small Coverage

High Resolution
Shear Force
Bulky
Noisy

Shear Force
Low Resolution
Noisy

High Resolution
Shear Force
Bulky
Noisy
20x

Shear Force
Low Resolution
Noisy

A Well-Designed Tactile is Needed for Robot Learning

Hardware

Scalable
High Resolution
Flexible

A Well-Designed Tactile is Needed for Robot Learning

Hardware

Scalable
High Resolution
Flexible

Learning

Multimodal Perception
System Design
representation

20)

3D-ViTac:

Learning Fine-Grained Manipulation with Visuo-Tactile Sensing

Binghao Huang¹, Yixuan Wang¹, Xinyi Yang², Yiyue Luo³, Yunzhu Li¹
¹Columbia University, ²University of Illinois Urbana-Champaign, ³University of Washington

What is Flexible Tactile Sensor?

What is Flexible Tactile Sensor?

Tactile Principle

Hardware Test

Flexible, Low-cost, Robust!

How We Build Multi-Sensory System?

High Resolution Tactile with Multi-View RGBD Camera

How We Build Multi-Sensory System?

High Resolution Tactile with Multi-View RGBD Camera

How We Build Multi-Sensory System?

High Resolution **Tactile** with Multi-View RGBD **Camera**

Visual Haptic feedback improve teleoperation data quality

Learning with Visuo-Tactile Policy

Learning with Visuo-Tactile Policy

(a) Real World Environment

(b) 3D Data Processing

Learning with Visuo-Tactile Policy

(a) Real World Environment

(b) 3D Data Processing

(c) Decision-Making Module

The robot can successfully grasp multiple grapes without broken

A successful in-hand adjustment can secure the following insertion task

1. Train yourself

-- to think and behave like the robot to feel

1. Train yourself

- -- to think and behave like the robot to feel
- -- Use visual haptic feedback to enhance teleoperation

1. Train yourself

- -- to think and behave like the robot to feel
- -- Use haptic feedback to enhance teleoperation

2. Prepare for Failures

-- e.g., re-grasp an egg if it drops)

1. Train yourself

- -- to think and behave like the robot to feel
- -- Use haptic feedback to enhance teleoperation

2. Prepare for Failures

-- e.g., re-grasp an egg if it drops)

3. Using tactile feedback to mitigate the negative impact of visual occlusion

What I Wish I Had for Visual-Tactile Sensing

- 1. Tactile Hardware!
 Robust and Scalable
- 2. Tactile Data!
 Both in Sim and Real
- 3. Multi-Modal Representation!

 Combine Vision and Touch

We hope to democratize our sensor to robot learning community!

Reproduction Resources

Sensor Fabrication and PCB Tutorial

Videos back from **both academia and industry**

We hope to democratize our sensor to robot learning community!

Reproduction Resources

Videos back from both academia and industry

What I Wish I Had for Visual-Tactile Sensing

1. Tactile Hardware!
Robust and Scalable

2. Tactile Data!
Both in Sim and Real

3. Representation!
Combine Vision and Touch

Real-World

Real-World

UMI Gripper

Real-World

UMI Gripper

Flexible Tactile

Real-World

UMI Gripper

Flexible Tactile

Real-World

(a) Tactile Hardware

In-Hand Reorientation and Insertion

Human Interference Test

In-Hand Reorientation and Insertion

Human Interference Test

Making Wild Tactile Data Collection Possible

Scaling Up Sim Tactile Data

Scaling Up Sim Tactile Data

Tactile Simulation

Simulate Compliance!

What I Wish I Had for Visual-Tactile Sensing

- 1. Tactile Hardware!
 Robust and Scalable
- 2. Tactile Data!
 Both in Sim and Real

3. Multi-Modal Representation! Combine Vision and Touch

Combine Vision and Touch

Pretrain Tactile Encoder

3D-ViTac: Learning Fine-Grained Manipulation with Visuo-Tactile Sensing

Hardware

Prototype Piezoresistive
Tactile Sensor

Learning

Learning with Real Data (Imitation Learning)

System

Visual Haptic Feedback and Multi-Modal Perception

Tactile with Multi-finger Hand
Force Haptic Feedback

New Tactile Sensor Fully **Scalable**,

Manufacturable

Tactile with UMI

Large-Scale Real-World Data Collection

Learning with Sim Data

Leverage **Simulation** to Improve Generalizability (Reinforcement Learning)